miércoles, 18 de marzo de 2009

METODOS PARA SOLDAR Y DESOLDAR COMPONENTES ELECTRONICOS


LA SOLDADURA
En electrónica, el sistema más utilizado para garantizar la circulación de corriente entre los diferentes componentes de un circuito, es la soldadura con estaño o aleaciones de este, según las aplicaciones. Se consiguen uniones muy fiables y definitivas, que permiten además sujetar los componentes en su posición y soportan bastante bien los golpes y las vibraciones, asegurando la conexión eléctrica durante un tiempo prolongado

EL SOLDADOR
Hoy en día, hay muchos sistemas industriales de soldadura para colocación de componentes sobre placas de circuito impreso, sin embargo, con un pequeño soldador se pueden realizar una gran cantidad de trabajos, tales como la construcción de circuitos impresos con todos sus componentes y el cableado de equipos muy complejos. El soldador manual es una herramienta sencilla, pero muy útil e importante, cuyo manejo merece la pena conocer y que se utiliza también el campo profesional.
Cuando es necesario sustituir un componente se usa un desoldador. Este modelo de accionamiento manual (conocido con el nombre de 'pera'), bastante común, es un accesorio que se instala sobre el cuerpo de un soldador y dispone de una punta hueca. Al aplicar esta punta sobre el componente a desoldar se funde el estaño, se aprieta la pera de goma y se suelta bruscamente, para que el aire, al penetrar en el interior de la misma, arrastre el estaño de la soldadura, liberando de este modo el componente.
Las puntas del soldador deben tener un tratamiento anticorrosivo, ya que al adquirir altas temperaturas y estar expuestas al aire tienden a oxidarse e irse deshaciendo. Es aconsejable apagar el soldador si no se va a utilizar por tiempo muy prolongado. El tamaño y forma de la punta dependen del modelo del soldador y de la utilización que se va a hacer de la misma. Existen puntas con formas especiales con el fin de acceder a zonas complicadas, sin embargo los modelos rector normales con punta bastante afilada se utilizan para casi todas las aplicaciones.
La potencia del soldador depende fundamentalmente de la cantidad de calor que hay que utilizar para realizar la soldadura y esto a su vez depende fundamentalmente del tamaño de la zona a soldar. Por ejemplo para soldar el terminal de un pequeño transistor a una pequeña pista de un circuito impreso se necesita aplicar muy poco calor, en cambio si queremos soldar un cable de 2,5mm a un terminal grande hay que aplicar una gran cantidad de calor para compensar el que disipan el cable y el terminal.
El soldador debe colocarse sobre un soporte que a parte de sujetarlo tiene entre otras funciones la de evitar accidentes, es decir quemaduras en personas y objetos producidas por la punta caliente. Además evacua parte del calor de la punta evitando el sobrecalentamiento de ésta. Sirve de soporte para una esponja que se debe mantener siempre húmeda y que se utiliza para limpiar la punta del soldador en caliente. Por otra parte, la punta de los soldadores tiene un tratamiento especial de su superficie y no puede rascarse con objetos metálicos ni lijarse o limarse.
Existe una gran variedad de soldadores, los más normales se alimentan de la red de 220V, directamente o a través de un transformador. También hay modelos de 12V para ser conectados a la toma de encendedor del automóvil. E incluso hay otros que utilizan gas butano, al igual que cualquier encendedor de cigarrillos. Son muy útiles cuando no se dispone de energía eléctrica o no es conveniente o dificultoso acceder a esta.

EL PROCESO DE SOLDAR
Antes de iniciar una soldadura hay que asegurase de que:
La punta del soldador esté limpia. Para ello se puede usar un cepillo de alambres suaves (que suele estar incluido en el soporte) o mejor una esponja humedecida (que también suelen traer los soportes). Se frotará la punta suavemente con el cepillo o contra la esponja. En ningún caso se raspará la punta con una lima, tijeras o similar, ya que puede dañarse el recubrimiento de cromo que tiene la punta del soldador (el recubrimiento proporciona una mayor vida a la punta).
Las piezas a soldar estén totalmente limpias y a ser posible preestañadas. Para ello se utilizará un limpia metales, lija muy fina, una lima pequeña o las tijeras, dependiendo del tipo y tamaño del material que se vaya a soldar.
Se está utilizando un soldador de la potencia adecuada. En Electrónica, lo mejor es usar soldadores de 15~30w., nunca superiores, pues los componentes del circuito se pueden dañar si se les aplica un calor excesivo.
DESOLDAR. Vamos a ver tres formas de desoldar.
·Malla para desoldar.
Se trata de una tira, con filamentos entrelazados, que se pone encima de la soldadura. Se calienta con la punta del soldador y al deshacerse absorbe el estaño. Únicamente lo uso, cuando no se puede utilizar el desoldador. En varias webs, comentan que este método es muy bueno para componentes SMD (las patillas no atraviesan la placa, sino que van soldadas a la superficie)
.El desoldador de pera.
Aquí a la derecha vemos un soldador de tipo lápiz sin punta. En lugar de la punta se le coloca el accesorio que se ve debajo y ya tenemos un desoldador, que suele recibir el nombre de desoldador de pera. Como se puede observar, el accesorio tiene una punta, un depósito donde se almacena el estaño absorbido, una espiga para adaptarlo al soldador y una pera de goma que sirve para hacer el vacío que absorberá el estaño.
Aquí vemos en detalle la punta y el depósito del accesorio para desoldar. Ésta se calienta de la misma manera que la punta normal.
El modo de proceder es el siguiente:
Presionar la pera con el dedo.
Acercar la punta hasta la zona de donde se quiera quitar el estaño.
Si la punta está limpia, el estaño de la zona se derretirá en unos pocos segundos. En ese momento, soltar la pera para que el vacío producido absorba el estaño hacia el depósito.
Presionar la pera un par de veces apuntando hacia un papel o el soporte para vaciar el depósito. Tener precaución, ya que el estaño sale a 300ºC.
Estos cuatro pasos se pueden repetir si fuera necesario.
Desoldador de vacío o chupon.
Ahora vamos a describir el otro tipo de soldador, el denominado chupón.
Este desoldador de vacío es una bomba de succión que consta de un cilindro que tiene en su interior un émbolo accionado por un muelle.
Tiene una punta de plástico, que soporta perfectamente las temperaturas utilizadas. El cuerpo principal (depósito) suele ser de aluminio.
Para manejarlo debemos cargarlo venciendo la fuerza del muelle y en el momento deseado pulsaremos el botón que libera el muelle y se produce el vacío en la punta.
Nos servirá para absorber estaño, que estaremos fundiendo simultáneamente con la punta del soldador

viernes, 6 de marzo de 2009

DIODO ZENER





Características del diodo Zener
El diodo zener es un tipo especial de
diodo, que siempre se utiliza polarizado inversamente.
Recordar que los diodos comunes, como el diodo rectificador (en donde se aprovechan sus características de polarización directa y polarización inversa).
En este caso la
corriente circula en contra de la flecha que representa el diodo.
Si el diodo zener se polariza en sentido directo se comporta como un diodo rectificador común.
Cuando el diodo zener funciona polarizado inversamente mantiene entre sus terminales un
voltaje constante.
En el gráfico se ve el símbolo de diodo zener (A - ánodo, K - cátodo) y el sentido de la corriente para que funcione en la zona operativa
Se analizará el diodo Zener, no como un elemento ideal, si no como un elemento real y se debe tomar en cuenta que cuando éste se polariza en modo inverso si existe una corriente que circula en sentido contrario a la flecha del diodo, pero de muy poco valor.
Curva característica del diodo Zener
Analizando la curva del diodo zener se ve que conforme se va aumentando negativamente el voltaje aplicado al diodo, la corriente que pasa por el aumenta muy poco.
Pero una vez que se llega a un determinado voltaje, llamada voltaje o tensión de Zener (Vz), el aumento del voltaje (siempre negativamente) es muy pequeño, pudiendo considerarse constante.
Para este voltaje, la corriente que atraviesa el diodo zener, puede variar en un gran rango de valores. A esta región se le llama la zona operativa.
Esta es la característica del diodo zener que se aprovecha para que funcione como regulador de voltaje, pues el voltaje se mantiene prácticamente constante para una gran variación de corriente. Ver el gráfico.
¿Qué hace un regulador con Zener?
Un
regulador con diodo zener ideal mantiene un voltaje predeterminado fijo a su salida, sin importar las variaciones de voltaje en la fuente de alimentación y/o las variaciones de corriente en la carga.
Nota: En las fuentes de voltaje ideales (algunas utilizan, entre otros elementos el diodo zener), el voltaje de salida no varía conforme varía la carga.
Pero las fuentes no son ideales y lo normal es que el voltaje de salida disminuya conforme la carga va aumentado, o sea conforme la demanda de corriente de la carga aumente.

miércoles, 4 de marzo de 2009

DIODOS LED




Diodo LED. Diodo emisor de luz. Light-Emitting Diode
Si alguna vez ha visto, unas pequeñas luces de diferentes colores que se encienden y apagan, en algún circuito electrónico, ha visto los diodos LED en funcionamiento.
Símbolo del diodo LED
El LED es un tipo especial de diodo, que trabaja como un diodo común, pero que al ser atravesado por la corriente eléctrica, emite luz.
Existen diodos LED de varios colores que dependen del material con el cual fueron construidos. Hay de color rojo, verde, amarillo, ámbar, infrarrojo, entre otros.
Eléctricamente el diodo LED se comporta igual que un diodo de silicio o germanio.
Si se pasa una
corriente a través del diodo semiconductor, se inyectan electrones y huecos en las regiones P y N, respectivamente.
Dependiendo de la magnitud de la corriente, hay recombinación de los portadores de carga (electrones y huecos).
Hay un tipo de recombinaciones que se llaman recombinaciones radiantes (aquí la emisión de
luz). La relación entre las recombinaciones radiantes y el total de recombinaciones depende del material semiconductor utilizado (GaAs, GaAsP, y GaP)
Dependiendo del material de que está hecho el LED, será la emisión de la longitud de onda y por ende el color.
Debe de escogerse bien la corriente que atraviesa el LED para obtener una buena intensidad luminosa y evitar que este se pueda dañar.
El LED tiene un
voltaje de operación que va de 1.5 V a 2.2 voltios aproximadamente y la gama de corrientes que debe circular por él está entre los 10 y 20 miliamperios (mA) en los diodos de color rojo y de entre los 20 y 40 miliamperios (mA) para los otros LEDs.
Los diodos LED tienen enormes ventajas sobre las
lámparas indicadoras comunes, como su bajo consumo de energía, su mantenimiento casi nulo y con una vida aproximada de 100,000 horas.
El diodo LED debe ser protegido. Una pequeña cantidad de corriente en sentido inverso no lo dañará, pero si hay picos inesperados puede dañarse.
Una forma de protegerlo es colocar en paralelo con el diodo LED pero apuntando en sentido opuesto un diodo de silicio común.
Aplicaciones tiene el diodo LED. Se utiliza ampliamente en aplicaciones visuales, como indicadoras de cierta situación específica de funcionamiento
.